Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Arch Virol ; 168(6): 166, 2023 May 22.
Article in English | MEDLINE | ID: covidwho-20238472

ABSTRACT

Clostridium perfringens is a constituent of the normal gut microbiome in pigs; however, it can potentially cause pre- and post-weaning diarrhea. Nevertheless, the importance of this bacterium as a primary pathogen of diarrhea in piglets needs to be better understood, and the epidemiology of C. perfringens in Korean pig populations is unknown. To study the prevalence and typing of C. perfringens, 203 fecal samples were collected from diarrheal piglets on 61 swine farms during 2021-2022 and examined for the presence of C. perfringens and enteric viruses, including porcine epidemic diarrhea virus (PEDV). We determined that the most frequently identified type of C. perfringens was C. perfringens type A (CPA; 64/203, 31.5%). Among the CPA infections, single infections with CPA (30/64, 46.9%) and coinfections with CPA and PEDV (29/64, 45.3%) were the most common in diarrheal samples. Furthermore, we conducted animal experiments to investigate the clinical outcome of single infections and coinfections with highly pathogenic (HP)-PEDV and CPA in weaned piglets. The pigs infected with HP-PEDV or CPA alone showed mild or no diarrhea, and none of them died. However, animals that were co-inoculated with HP-PEDV and CPA showed more-severe diarrheal signs than those of the singly infected pigs. Additionally, CPA promoted PEDV replication in coinfected piglets, with high viral titers in the feces. A histopathological examination revealed more-severe villous atrophy in the small intestine of coinfected pigs than in singly infected pigs. This indicates a synergistic effect of PEDV and CPA coinfection on clinical disease in weaned piglets.


Subject(s)
Coinfection , Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Swine , Animals , Clostridium perfringens , Coinfection/epidemiology , Coinfection/veterinary , Weaning , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Coronavirus Infections/pathology , Diarrhea/epidemiology , Diarrhea/veterinary , Diarrhea/pathology , Swine Diseases/epidemiology , Patient Acuity
2.
Microb Pathog ; 181: 106185, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-20231019

ABSTRACT

Porcine Epidemic Diarrhoea (PED) is an acute, extremely infectious intestinal disease of pigs caused by the Porcine Epidemic Diarrhoea Virus (PEDV). The virus can affect pigs of all breeds and age groups and shows varying degrees of symptoms, with piglets, in particular, being infected with mortality rates of up to 100%. PEDV was first identified in China in the 1980s and in October 2010 a large-scale PED outbreak caused by a variant of PEDV occurred in China, resulting in huge economic losses. Initially, vaccination can effectively prevent the classical strain, but since December 2010, the PEDV variant has caused "persistent diarrhoea" with severe vomiting, watery diarrhoea, and high morbidity and mortality in newborn piglets as the dominant clinical features, with a significant increase in morbidity and mortality. This indicates that PEDV strains have mutated during evolution and that traditional vaccines no longer provide effective cross-immune protection, so it is necessary to optimize immunization programs and find effective treatments through epidemiological surveys of PEDV to reduce the economic losses caused by infections with mutated strains. This article reviews the progress of research on the aetiology, epidemiological characteristics, genotyping, pathogenesis, transmission routes, and comprehensive control of PEDV infection in China.


Subject(s)
Coronavirus Infections , Dysentery , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Porcine epidemic diarrhea virus/genetics , Genotype , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Diarrhea , China/epidemiology , Swine Diseases/epidemiology , Swine Diseases/prevention & control
3.
Vector Borne Zoonotic Dis ; 23(7): 397-400, 2023 07.
Article in English | MEDLINE | ID: covidwho-2317952

ABSTRACT

Background: Serological evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been reported in white-tailed deer (WTD) in the United States and Canada. Even though WTD are susceptible to SARS-CoV-2 infection, there is no evidence of infection by this virus in other mammalian species that might interact with WTD in nature. Similar to WTD, feral swine are widely distributed and generally occupy the same range as WTD in Texas. The objective of this study was to determine the prevalence of SARS-CoV-2 neutralizing antibody in WTD during 2020 and 2021 and determine the prevalence of SARS-CoV-2 neutralizing antibody in feral swine during 2018 (prepandemic period) and from March 2020 to February 2021 (pandemic period) in Travis County, Texas. Materials and Methods: Sera samples were collected from hunter-killed WTD and feral swine during the prepandemic and pandemic period and tested for SARS-CoV-2 antibody by a plaque reduction neutralization assay in Vero cells. Results: SARS-CoV-2 antibody was not detected in any of the 166 feral swine sera samples, including 24 samples collected during the prepandemic and 142 samples collected during the pandemic period. Furthermore, SARS-CoV-2 antibody was not detected in the 115 WTD samples collected during late 2020, but antibody was detected in WTD in early 2021. Conclusions: The results indicated that SARS-CoV-2 infection of WTD occurred during early 2021 in Travis County, Texas, but serological evidence of SARS-CoV-2 infection was not detected in the feral swine samples collected from the same locality and during the same time period of the collection of WTD samples.


Subject(s)
COVID-19 , Deer , Swine Diseases , Chlorocebus aethiops , Animals , Swine , Texas/epidemiology , SARS-CoV-2 , Vero Cells , COVID-19/epidemiology , COVID-19/veterinary , Antibodies, Viral , Antibodies, Neutralizing , Swine Diseases/epidemiology
4.
Arch Virol ; 168(5): 152, 2023 May 04.
Article in English | MEDLINE | ID: covidwho-2317672

ABSTRACT

Porcine epidemic diarrhea (PED) virus (PEDV) is a highly contagious virus. PED was first identified in 2008 and has greatly affected the Vietnamese pig production economy. The aim of this study was to investigate the epidemiological and genetic characteristics of PEDV in piglet herds in the Mekong Delta, Vietnam. Diarrheal stool and intestinal samples from 2262 piglets from 191 herds in five provinces were collected to test for the presence of PEDV. Ten PEDV strains were randomly selected for sequencing, and four genes encoding PEDV structural proteins were analyzed. The rates of herds and samples positive for PEDV were 27.23% and 27.72%, respectively. In positive herds, the morbidity and mortality of PEDV-positive piglets were 97.97% and 79.06%, respectively, with most of the infected piglets under 7 days of age. Phylogenetic analysis showed that the 10 PEDV strains from this study clustered with genotype G2 strains from Vietnam and neighboring countries. Many amino acid substitutions were identified in important antigenic regions in the spike protein of the 10 strains when compared to four PEDV vaccine strains. This study provides novel insights into the epidemiology and genetic diversity of circulating PEDV strains, which could facilitate the development of an appropriate and proactive strategy for controlling PED.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Porcine epidemic diarrhea virus/genetics , Phylogeny , Vietnam/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Molecular Epidemiology , Diarrhea/epidemiology , Diarrhea/veterinary , Swine Diseases/epidemiology
5.
Microb Pathog ; 179: 106118, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2305539

ABSTRACT

Porcine deltacoronavirus (PDCoV), a novel coronavirus which infects pigs, spreading around the world and causing huge economic losses. In recent years, there have also been human cases of PDCoV infection, which poses a potential threat to public health. Therefore, we conducted a systematic review and meta-analysis to assess the prevalence of PDCoV in pigs in China between 2015 and 2021. The prevalence of PDCoV in China was searched from five databases (CNKI, VIP, WanFang, PubMed and ScienceDirect) and 65 articles met the inclusion criteria, with a total of 25,977 samples, including 3828 positive cases. The overall prevalence of PDCoV was 13.61% (3828/25,977), with the highest prevalence in northern China (19.18%) and the lowest prevalence in southwest China (7.19%). We also analyzed other subgroup information, such as sampling years, test methods, age and geographic factors. The results show that PDCoV is endemic in China and climate may be a potential risk factor for PDCoV infection. It is suggested that appropriate measures should be taken in different climatic areas to reduce local PDCoV infection.


Subject(s)
COVID-19 , Swine Diseases , Humans , Swine , Animals , Prevalence , China/epidemiology , Swine Diseases/epidemiology
6.
J Med Virol ; 95(3): e28672, 2023 03.
Article in English | MEDLINE | ID: covidwho-2288079

ABSTRACT

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a newly discovered alphacoronavirus with zoonotic potential that causes diarrhea and vomiting mainly in piglets. Having emerged suddenly in 2017, the prevailing opinion is that the virus originated from HKU2, an alphacoronavirus whose primary host is bats, and at some unknown point achieved interspecies transmission via some intermediate. Here, we further explore the evolutionary history and possible cross-species transmission event for SADS-CoV. Coevolutionary analysis demonstrated that HKU2 may have achieved host switch via SADS-related (SADSr)-CoV, which was isolated from the genus Rhinolophus in 2017. SADS-CoV, HKU2, and SADSr-CoV share similar codon usage patterns and showed a lower tendency to use CpG, which may reflect a method of immune escape. The analyses of virus-host coevolution and recombination support SADSr-CoV is the direct source of SADS-CoV that may have undergone recombination events during its formation. Structure-based spike glycoprotein variance analysis revealed a more nuanced evolutionary pathway to receptor recognition for host switch. We did not find a possible positive selection site, and the dN/dS of the S gene was only 0.29, which indicates that the current SADS-CoV is slowly evolving. These results provide new insights that may help predict future cross-species transmission, and possibly surveil future zoonotic outbreaks and associated public health emergencies.


Subject(s)
Alphacoronavirus , Chiroptera , Coronavirus Infections , Swine Diseases , Animals , Swine , Alphacoronavirus/genetics , Coronavirus Infections/epidemiology , Diarrhea/veterinary , Swine Diseases/epidemiology
7.
Virol J ; 20(1): 13, 2023 01 20.
Article in English | MEDLINE | ID: covidwho-2214603

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) variant strains cause great economic losses to the global swine industry. However, vaccines do not provide sufficient protection against currently circulating strains due to viral mutations. This study traced the molecular characteristics of the most recent isolates in China and aimed to provide a basis for the prevention and treatment of PEDV. METHODS: We obtained samples from a Chinese diarrheal swine farm in 2022. Reverse transcription polymerase chain reaction and immunofluorescence were used to determine the etiology, and the full-length PEDV genome was sequenced. Nucleotide similarity was calculated using MEGA to construct a phylogenetic tree and DNASTAR. Mutant amino acids were aligned using DNAMAN and modeled by SWISS-MODEL, Phyre2 and FirstGlance in JMOL for protein tertiary structure simulation. Additionally, TMHMM was used for protein function prediction. RESULTS: A PEDV virulent strain CH/HLJJS/2022 was successfully isolated in China. A genome-wide based phylogenetic analysis suggests that it belongs to the GII subtype, and 96.1-98.9% homology existed in the whole genomes of other strains. For the first time, simultaneous mutations of four amino acids were found in the highly conserved membrane (M) and nucleocapsid (N) proteins, as well as eight amino acid mutations that differed from the vast majority of strains in the spike (S) protein. Three of the mutations alter the S-protein spatial structure. In addition, typing markers exist during strain evolution, but isolates are using the fusion of specific amino acids from multiple variant strains to add additional features, as also demonstrated by protein alignments and 3D models of numerous subtype strains. CONCLUSION: The newly isolated prevalent strain CH/HLJJS/2022 belonged to the GII subtype, and thirteen mutations different from other strains were found, including mutations in the highly conserved m and N proteins, and in the S1° and COE neutralizing epitopes of the S protein. PEDV is breaking through original cognitions and moving on a more complex path. Surveillance for PEDV now and in the future and improvements derived from mutant strain vaccines are highly warranted.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Viral Vaccines , Swine , Animals , Phylogeny , Mutation , Viral Vaccines/genetics , Amino Acids/genetics , China/epidemiology , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Swine Diseases/epidemiology
8.
Prev Vet Med ; 211: 105819, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2182415

ABSTRACT

The objectives of this study were to describe the epidemiology of African swine fever (ASF) and to identify factors that increased commune-level risk for ASF in Can Tho, a province in the Mekong River Delta of Vietnam. In 2019, a total of 2377 of the 5220 pig farms in Can Tho were ASF positive, an incidence risk of 46 (95% CI 44-47) ASF positive farms for every 100 farms at risk. Throughout the outbreak ASF resulted in either the death or culling of 59,529 pigs out of a total population size of 124,516 (just under half of the total pig population, 48%). After the first detection in Can Tho in May 2019, ASF spread quickly across all districts with an estimated dissemination ratio (EDR) of greater than one up until the end of July 2019. A mixed-effects Poisson regression model was developed to identify risk factors for ASF. One hundred unit increases in the number of pigs per square kilometre was associated with a 1.28 (95% CrI 1.05-1.55) fold increase in commune-level ASF incidence rate. One unit increases in the number of pig farms per square kilometre was associated with a 0.91 (95% CrI 0.84-0.99) decrease in commune-level ASF incidence rate. Mapping spatially contiguous communes with elevated (unaccounted-for) ASF risk provide a means for generating hypotheses for continued disease transmission. We propose that the analyses described in this paper might be run on an ongoing basis during an outbreak and disease control efforts modified in light of the information provided.


Subject(s)
African Swine Fever Virus , African Swine Fever , Epidemics , Swine Diseases , Swine , Animals , African Swine Fever/prevention & control , Vietnam/epidemiology , Disease Outbreaks/veterinary , Disease Outbreaks/prevention & control , Spatial Analysis , Epidemics/veterinary , Sus scrofa , Swine Diseases/epidemiology
9.
BMC Vet Res ; 18(1): 444, 2022 Dec 22.
Article in English | MEDLINE | ID: covidwho-2196274

ABSTRACT

The emergence and rapid spread of the acute respiratory syndrome coronavirus-2 have confirmed that animal coronaviruses represent a potential zoonotic source. Porcine deltacoronavirus is a worldwide evolving enteropathogen of swine, detected first in Hong Kong, China, before its global identification. Following the recent detection of PDCoV in humans, we attempted in this report to re-examine the status of PDCoV phylogenetic classification and evolutionary characteristics. A dataset of 166 complete PDCoV genomes was analyzed using the Maximum Likelihood method in IQ-TREE with the best-fitting model GTR + F + I + G4, revealing two major genogroups (GI and GII), with further seven and two sub-genogroups, (GI a-g) and (GII a-b), respectively. PDCoV strains collected in China exhibited the broadest genetic diversity, distributed in all subgenotypes. Thirty-one potential natural recombination events were identified, 19 of which occurred between China strains, and seven involved at least one China strain as a parental sequence. Importantly, we identified a human Haiti PDCoV strain as recombinant, alarming a possible future spillover that could become a critical threat to human health. The similarity and recombination analysis showed that PDCoV spike ORF is highly variable compared to ORFs encoding other structural proteins. Prediction of linear B cell epitopes of the spike glycoprotein and the 3D structural mapping of amino acid variations of two representative strains of GI and GII showed that the receptor-binding domain (RBD) of spike glycoprotein underwent a significant antigenic drift, suggesting its contribution in the genetic diversity and the wider spread of PDCoV.


Subject(s)
COVID-19 , Swine Diseases , Humans , Swine , Animals , Phylogeny , COVID-19/veterinary , Biological Evolution , Glycoproteins , Swine Diseases/epidemiology
10.
BMC Vet Res ; 18(1): 401, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2115817

ABSTRACT

BACKGROUND: African swine fever (ASF) has been present in Lithuania since 2014. The disease affects mainly the wild boar population. Thus, hunters play a key role in the performance of disease surveillance and control measures. We used participatory methods to gain insight into the knowledge of hunters and to include their perceptions in the design and the implementation of surveillance and control measures to increase their effectiveness. RESULTS: The willingness and the interest of hunters to participate was high, but only eight focus group meetings with 33 hunters could be held due to the COVID-19 pandemic. The overall knowledge of Lithuanian hunters regarding ASF, investigated by semi-structured interviews, was sufficient to understand their part in ASF control and surveillance. However, their knowledge did not necessarily lead to an increased acceptance of some ASF control measures, like the targeted hunting of female wild boar. Participating hunters showed a good understanding of the processes of the surveillance system. Their trust in the performance within this system was highest towards the hunters themselves, thus emphasizing the importance of acknowledging their role in the system. Hunters refused measures including the reduction of hunting activities. They feared a complete elimination of the wild boar population, which in turn demonstrates the necessity to increase professional information exchange. CONCLUSIONS: The perceptions of Lithuanian hunters regarding ASF surveillance and control in wild boar resembled those obtained in neighboring countries. It is imperative to communicate the results with decision-makers, to consider the views of hunters, when designing or adapting measures to control ASF in wild boar and to communicate with hunters on these measures and their justification.


Subject(s)
African Swine Fever Virus , African Swine Fever , COVID-19 , Swine Diseases , Female , Swine , Animals , African Swine Fever/epidemiology , African Swine Fever/prevention & control , Lithuania/epidemiology , Pandemics , COVID-19/veterinary , Sus scrofa , Swine Diseases/epidemiology
11.
BMC Vet Res ; 18(1): 392, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2108779

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, has become the major causative agent of acute gastroenteritis in piglets since 2010 in China. RESULTS: In the current study, 91 complete spike (S) gene sequences were obtained from PEDV positive samples collected from 17 provinces in China from March 2020 to March 2021. A phylogenetic analysis showed that 92.3% (84 out of 91) of the identified strains belonged to GII subtype, while 7.7% (7 out of 91) were categorized as S-INDEL like strains and grouped within GI-c clade. Based on a recombination analysis, six of S-INDEL like strains were recombinant strains originated from S-INDEL strain FR/001/2014 and virulent strain AJ1102. In addition, PEDV variant strains (CH/GDMM/202012, CH/GXDX/202010 et al) carrying novel insertions (360QGRKS364 and 1278VDVF1281) in the S protein were observed. Furthermore, the deduced amino acid sequences for the S protein showed that multiple amino acid substitutions in the antigenic epitopes in comparison with the vaccine strains. CONCLUSIONS: In conclusion, these data provide novel molecular evidence on the epidemiology and molecular diversity of PEDV in 2020-2021. This information may help design a strategy for controlling and preventing the prevalence of PEDV variant strains in China.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Phylogeny , Swine Diseases/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Amino Acid Sequence , China/epidemiology , Spike Glycoprotein, Coronavirus/genetics
12.
Transbound Emerg Dis ; 69(5): e2443-e2455, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2053020

ABSTRACT

The porcine deltacoronavirus (PDCoV) is a newly discovered pig enteric coronavirus that can infect cells from various species. In Haiti, PDCoV infections in children with acute undifferentiated febrile fever were recently reported. Considering the great potential of inter-species transmission of PDCoV, we performed a comprehensive analysis of codon usage patterns and host adaptation profiles of 54 representative PDCoV strains with the spike (S) gene. Phylogenetic analysis of the PDCoV S gene indicates that the PDCoV strains can be divided into five genogroups. We found a certain codon usage bias existed in the S gene, in which the synonymous codons are often ended with U or A. Heat map analysis revealed that all the PDCoV strains shared a similar codon usage trend. The PDCoV S gene with a dN/dS ratio lower than 1 reveals a negative selection on the PDCoV S gene. Neutrality analysis showed that natural selection is the dominant force in shaping the codon usage bias of the PDCoV S gene. Unexpectedly, host adaptation analysis reveals a higher adaptation level of PDCoV to Homo sapiens and Gallus gallus than to Sus scrofa. Compared to the USA lineage, the PDCoV strains in the Early China lineage and Thailand lineage were less adapted to their hosts, which indicates that the evolutionary process plays an important role in the adaptation ability of PDCoV. These findings of this study add to our understanding of PDCoV's evolution, adaptability, and inter-species transmission.


Subject(s)
Coronavirus Infections , Swine Diseases , Animals , Codon/genetics , Codon Usage , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Deltacoronavirus , Genome, Viral/genetics , Phylogeny , Swine , Swine Diseases/epidemiology
13.
Viruses ; 14(8)2022 08 17.
Article in English | MEDLINE | ID: covidwho-2010307

ABSTRACT

A safe and efficacious live-attenuated vaccine for porcine epidemic diarrhea virus (PEDV) is not commercially available in the United States yet. Two major PEDV strains are currently circulating in US swine: highly virulent non-S-INDEL strain and milder virulent S-INDEL strain. In this study, the safety and protective efficacy of a plaque-purified S-INDEL PEDV isolate formulated as a vaccine candidate was evaluated. Ten pregnant gilts were divided into three groups and orally inoculated at 79 days of gestation and then boosted at 100 days gestation (T01: n = 4, vaccination/challenge; T02: n = 4, non-vaccination/challenge; T03: n = 2, non-vaccination/non-challenge). None of the gilts had adverse clinical signs after vaccination. Only one T01 gilt (#5026) had viral replication and detectible viral RNA in feces. The same gilt had consistent levels of PEDV-specific IgG and IgA antibodies in serum and colostrum/milk. Farrowed piglets at 3 to 5 days of age from T01 and T02 gilts were orally challenged with 103 TCID50/pig of the virulent non-S-INDEL PEDV while T03 piglets were orally inoculated with virus-negative medium. T01 litters had overall lower mortality than T02 (T01 36.4% vs. T02 74.4%). Specifically, there was 0% litter mortality from T01 gilt 5026. Overall, it appears that vaccination of pregnant gilts with S-INDEL PEDV can passively protect piglets if there is virus replication and immune response induction in the pregnant gilts.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Viral Vaccines , Animals , Animals, Newborn , Antibodies, Viral , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Female , Porcine epidemic diarrhea virus/genetics , Pregnancy , Sus scrofa , Swine , Swine Diseases/epidemiology , United States , Vaccines, Attenuated
14.
Int J Mol Sci ; 23(17)2022 Aug 29.
Article in English | MEDLINE | ID: covidwho-2006045

ABSTRACT

Since the beginning of the 21st century, humans have experienced three coronavirus pandemics, all of which were transmitted to humans via animals. Recent studies have found that porcine deltacoronavirus (PDCoV) can infect humans, so swine enteric coronavirus (SeCoV) may cause harm through cross-species transmission. Transmissible gastroenteritis virus (TGEV) and PDCoV have caused tremendous damage and loss to the pig industry around the world. Therefore, we analyzed the genome sequence data of these two SeCoVs by evolutionary dynamics and phylogeography, revealing the genetic diversity and spatiotemporal distribution characteristics. Maximum likelihood and Bayesian inference analysis showed that TGEV could be divided into two different genotypes, and PDCoV could be divided into four main lineages. Based on the analysis results inferred by phylogeography, we inferred that TGEV might originate from America, PDCoV might originate from Asia, and different migration events had different migration rates. In addition, we also identified positive selection sites of spike protein in TGEV and PDCoV, indicating that the above sites play an essential role in promoting membrane fusion to achieve adaptive evolution. In a word, TGEV and PDCoV are the past and future of SeCoV, and the relatively smooth transmission rate of TGEV and the increasing transmission events of PDCoV are their respective transmission characteristics. Our results provide new insights into the evolutionary characteristics and transmission diversity of these SeCoVs, highlighting the potential for cross-species transmission of SeCoV and the importance of enhanced surveillance and biosecurity measures for SeCoV in the context of the COVID-19 epidemic.


Subject(s)
COVID-19 , Swine Diseases , Transmissible gastroenteritis virus , Animals , Bayes Theorem , Deltacoronavirus , Humans , Phylogeography , Swine , Swine Diseases/epidemiology , Transmissible gastroenteritis virus/genetics
15.
Viruses ; 14(7)2022 06 28.
Article in English | MEDLINE | ID: covidwho-1964115

ABSTRACT

Swine enteric viruses are a major cause of piglet diarrhea, causing a devastating impact on the pork industry. To further understand the molecular epidemiology and evolutionary diversity of swine enteric viruses, we carried out a molecular epidemiological investigation of swine enteric viruses (PEDV, PDCoV, PoRVA, and TGEV) on 7107 samples collected from pig farms in south-central China. The results demonstrated that PEDV is the predominant pathogen causing piglet diarrhea, and its infection occurs mainly in relatively cold winter and spring in Hunan and Hubei provinces. The positive rate of PEDV showed an abnormal increase from 2020 to 2021, and that of PoRVA and PDCoV exhibited gradual increases from 2018 to 2021. PEDV-PoRVA and PEDV-PDCoV were the dominant co-infection modes. A genetic evolution analysis based on the PEDV S1 gene and ORF3 gene revealed that the PEDV GII-a is currently epidemic genotype, and the ORF3 gene of DY2020 belongs to a different clade relative to other GII-a strains isolated in this study. Overall, our results indicated that the variant PEDV GII-a is the main pathogen of piglet diarrhea with a trend of outbreak. G9 is the dominant PoRVA genotype and has the possibility of outbreak as well. It is therefore critical to strengthen the surveillance of PEDV and PoRVA, and to provide technical reserves for the prevention and control of piglet diarrhea.


Subject(s)
Coronavirus Infections , Enteroviruses, Porcine , Porcine epidemic diarrhea virus , Swine Diseases , Animals , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Diarrhea/epidemiology , Diarrhea/veterinary , Phylogeny , Swine , Swine Diseases/epidemiology
16.
Viruses ; 14(6)2022 06 16.
Article in English | MEDLINE | ID: covidwho-1911641

ABSTRACT

Porcine epidemic diarrhea (PED), causing up to 100% mortality in neonatal pigs, is a highly contagious enteric disease caused by PED virus (PEDV). The highly virulent genogroup 2 (G2) PEDV emerged in 2010 and has caused huge economic losses to the pork industry globally. It was first reported in the US in 2013, caused country-wide outbreaks, and posed tremendous hardship for many pork producers in 2013-2014. Vaccination of pregnant sows/gilts with live attenuated vaccines (LAVs) is the most effective strategy to induce lactogenic immunity in the sows/gilts and provide a passive protection via the colostrum and milk to suckling piglets against PED. However, there are still no safe and effective vaccines available after about one decade of endeavor. One of the biggest concerns is the potential reversion to virulence of an LAV in the field. In this review, we summarize the status and the major obstacles in PEDV LAV development. We also discuss the function of the transcriptional regulatory sequences in PEDV transcription, contributing to recombination, and possible strategies to prevent the reversion of LAVs. This article provides insights into the rational design of a promising LAV without safety issues.


Subject(s)
Coronavirus Infections , Dysentery , Porcine epidemic diarrhea virus , Swine Diseases , Viral Vaccines , Animals , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Diarrhea/prevention & control , Diarrhea/veterinary , Female , Pregnancy , Recombination, Genetic , Sus scrofa , Swine , Swine Diseases/epidemiology , Vaccines, Attenuated
17.
Vet Q ; 42(1): 125-147, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1852679

ABSTRACT

Swine coronaviruses (SCoVs) are one of the most devastating pathogens affecting the livelihoods of farmers and swine industry across the world. These include transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine respiratory coronavirus (PRCV), porcine hemagglutinating encephalomyelitis virus (PHEV), swine acute diarrhea syndrome coronavirus (SADS-CoV), and porcine delta coronavirus (PDCoV). Coronaviruses infect a wide variety of animal species and humans because these are having single stranded-RNA that accounts for high mutation rates and thus could break the species barrier. The gastrointestinal, cardiovascular, and nervous systems are the primary organ systems affected by SCoVs. Infection is very common in piglets compared to adult swine causing high mortality in the former. Bat is implicated to be the origin of all CoVs affecting animals and humans. Since pig is the only domestic animal in which CoVs cause a wide range of diseases; new coronaviruses with high zoonotic potential could likely emerge in the future as observed in the past. The recently emerged severe acute respiratory syndrome coronavirus virus-2 (SARS-CoV-2), causing COVID-19 pandemic in humans, has been implicated to have animal origin, also reported from few animal species, though its zoonotic concerns are still under investigation. This review discusses SCoVs and their epidemiology, virology, evolution, pathology, wildlife reservoirs, interspecies transmission, spill-over events and highlighting their emerging threats to swine population. The role of pigs amid ongoing SARS-CoV-2 pandemic will also be discussed. A thorough investigation should be conducted to rule out zoonotic potential of SCoVs and to design appropriate strategies for their prevention and control.


Subject(s)
COVID-19 , Porcine epidemic diarrhea virus , Swine Diseases , Alphacoronavirus , Animals , COVID-19/epidemiology , COVID-19/veterinary , Humans , Pandemics , SARS-CoV-2 , Swine , Swine Diseases/epidemiology
18.
Vet Microbiol ; 270: 109447, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1805301

ABSTRACT

Enteric disease is the predominant cause of morbidity and mortality in young mammals including pigs. Viral species involved in porcine enteric disease complex (PEDC) include rotaviruses, coronaviruses, picornaviruses, astroviruses and pestiviruses among others. The virome of three groups of swine samples submitted to the Kansas State University Veterinary Diagnostic Laboratory for routine testing were assessed, namely, a Rotavirus A positive (RVA) group, a Rotavirus co-infection (RV) group and a Rotavirus Negative (RV Neg) group. All groups were designated by qRT-PCR test results for Porcine Rotavirus A, B, C and H such that samples positive for RVA only went in the RVA group, samples positive for > 1 rotavirus went in the RV group and samples negative for all were grouped in the RVNeg group. All of the animals had clinical enteric disease resulting in scours and swollen joints/lameness, enlarged heart and/or a cough. All samples were metagenomic sequenced and analyzed for viral species composition that identified 14 viral species and eight bacterial viruses/phages. Sapovirus and Escherichia coli phages were found at a high prevalence in RVA and RV samples but were found at low or no prevalence in the RVNeg samples. Picobirnavirus was identified at a high proportion and prevalence in RVNeg and RV samples but at a low prevalence in the RVA group. Non-rotaviral diversity was highest in RVA samples followed by RV then RV Neg samples. A sequence analysis of the possible host of Picobirnaviruses revealed fungi as the most likely host. Various sequences were extracted from the sample reads and a phylogenetic update was provided showing a high prevalence of G9 and P[23] RVA genotypes. These data are important for pathogen surveillance and control measures.


Subject(s)
Rotavirus Infections , Rotavirus , Swine Diseases , Animals , Diarrhea/epidemiology , Diarrhea/veterinary , Feces , Genotype , Humans , Mammals , Phylogeny , Rotavirus/genetics , Rotavirus Infections/epidemiology , Rotavirus Infections/veterinary , Swine , Swine Diseases/epidemiology , Virome
19.
Front Public Health ; 10: 836177, 2022.
Article in English | MEDLINE | ID: covidwho-1776039

ABSTRACT

Taenia solium cysticercosis is the most common cause of acquired epilepsy in pig-raising and pork-consuming parts of Africa, Latin America, and Asia. This review aimed to systematically compile and synthesize data on the epidemiology of porcine cysticercosis in the Eastern and Southern Africa (ESA) region. Comprehensive searching strategies were employed to retrieve the studies published or reported between January 1,1997 and March 1, 2021, from Pub Med, Hinari, and Google Scholar databases and search platforms. The identified studies that met the inclusion criteria were then appraised for methodological quality. Finally, 44 studies obtained from nine countries were selected and included in this review. Relevant data were extracted using standardized templates for qualitative synthesis and meta-analysis. The overall pooled prevalence estimate of porcine cysticercosis in the ESA region was 17% (95% CI: 14-20%). The prevalence level between and within countries showed high variability. The pooled estimate showed high heterogeneity among the reports (the inverse variance index value (I2) of 98.99%, p < 0.05). The meta-analysis sub-grouped by the type of diagnostic test showed the pooled prevalence estimate of 27% (95% CI: 9-50) by carcass dissection; 23% (95% CI: 14-33) by Antibody-based immunodiagnostic techniques; 23% (95% CI: 18-29) by antigen detecting (Ag)-ELISA, 12% (95% CI: 7-18) by meat inspection, and 9% (95% CI: 7-11) by lingual examination. The meta-analysis sub-grouped by region showed a relatively higher pooled prevalence estimate for the Southern region 22% (95% CI: 15-30) compared to 13% (95% CI: 11-15) in the Eastern region. The highest country-based pooled prevalence was obtained from South Africa (33%, 95% CI: 20-48) and Zambia (22%, 95% CI: 16-29), whereas the lowest pooled prevalence was identified in Madagascar (5%, 95% CI: 4-5) and Rwanda (7%, 95% CI: 6-8). The lack of latrine, traditional pig husbandry practices, unprotected water sources, and increase in age were identified as significant risk factors for the occurrence of porcine cysticercosis in the pooled studies. The findings of this review will provide context-specific input to prioritize the possible intervention programs for T. solium control in the ESA region. More sensitive and specific test-based prevalence estimates, detailed risk factor investigations, and financial losses analysis are needed to establish feasible control strategies. Systematic Review Registration: http://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42021238931.


Subject(s)
Cysticercosis , Swine Diseases , Africa, Southern , Animals , Cysticercosis/epidemiology , Cysticercosis/veterinary , Enzyme-Linked Immunosorbent Assay , Swine , Swine Diseases/epidemiology
20.
Transbound Emerg Dis ; 69(2): 396-412, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1774900

ABSTRACT

A limited understanding of the transmission dynamics of swine disease is a significant obstacle to prevent and control disease spread. Therefore, understanding between-farm transmission dynamics is crucial to developing disease forecasting systems to predict outbreaks that would allow the swine industry to tailor control strategies. Our objective was to forecast weekly porcine epidemic diarrhoea virus (PEDV) outbreaks by generating maps to identify current and future PEDV high-risk areas, and simulating the impact of control measures. Three epidemiological transmission models were developed and compared: a novel epidemiological modelling framework was developed specifically to model disease spread in swine populations, PigSpread, and two models built on previously developed ecosystems, SimInf (a stochastic disease spread simulations) and PoPS (Pest or Pathogen Spread). The models were calibrated on true weekly PEDV outbreaks from three spatially related swine production companies. Prediction accuracy across models was compared using the receiver operating characteristic area under the curve (AUC). Model outputs had a general agreement with observed outbreaks throughout the study period. PoPS had an AUC of 0.80, followed by PigSpread with 0.71, and SimInf had the lowest at 0.59. Our analysis estimates that the combined strategies of herd closure, controlled exposure of gilts to live viruses (feedback) and on-farm biosecurity reinforcement reduced the number of outbreaks. On average, 76% to 89% reduction was seen in sow farms, while in gilt development units (GDU) was between 33% to 61% when deployed to sow and GDU farms located in probabilistic high-risk areas. Our multi-model forecasting approach can be used to prioritize surveillance and intervention strategies for PEDV and other diseases potentially leading to more resilient and healthier pig production systems.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary , Ecosystem , Farms , Female , Swine , Swine Diseases/epidemiology , Swine Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL